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Abstract First, we introduce the notion of shape operator of Codazzi type for real hyper-
surfaces in the complex quadric Qm∗ = SOo

m,2/SOmSO2. Next, we give a complete proof
of non-existence of real hypersurfaces in Qm∗ = SOo

m,2/SOmSO2 with shape operator of
Codazzi type.Motivated by this result, we give a complete classification of real hypersurfaces
in Qm∗ = SOo

m,2/SOmSO2 with Reeb parallel shape operator.
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quadric
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1 Introduction

As examples of some Hermitian symmetric spaces of rank 2, usually we can consider
the Riemannian symmetric spaces SUm+2/S(U2Um) and SU2,m/S(U2Um), which are said
to be complex two-plane Grassmannians and complex hyperbolic two-plane Grassmanni-
ans, respectively (see [11,12] and [15–18]). These are Hermitian symmetric spaces and
quaternionic Kähler symmetric spaces equipped with the Kähler structure J and the quater-
nionic Kähler structure J = Span{J1, J2, J3} on SUm+2/S(U2Um) and SU2,m/S(U2Um).
There are exactly two types of singular tangent vector fields X on SUm+2/S(U2Um)
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1308 Y. J. Suh, D. H. Hwang

and SU2,m/S(U2Um), which are characterized by the geometric properties J X ∈ JX or
J X ⊥ JX .

As another example of Hermitian symmetric space of compact type with rank 2 different
from the above ones, we can consider a complex quadric Qm = SOm+2/SO2SOm , which
is a complex hypersurface in complex projective space CPm+1 (see Reckziegel [13], Smyth
[14] and Suh [19,20], and [21]). The complex quadric can also be regarded as a kind of
real Grassmann manifold of compact type with rank 2 (see Kobayashi and Nomizu [6]).
Accordingly, the complex quadric admits two important geometric structures, a complex
conjugation structure A and a Kähler structure J , which anti-commute with each other, that
is, AJ = −J A. Then for m≥2 the triple, (Qm, J, g) is a Hermitian symmetric space of
compact type with rank 2 and its maximal sectional curvature is equal to 4 (see Klein [5] and
Reckziegel [13]).

About the latter part of twentieth century, many geometers have investigated some real
hypersurfaces in Hermitian symmetric spaces of rank 1 like the complex projective space
CPm or the complex hyperbolic space CHm . In the complex projective space CPm and
the quaternionic projective space HPm , a characterization with isometric Reeb flow was
obtained by Okumura [8], D-parallel shape operator ∇DA = 0 by Pérez [9], and D-parallel
curvature tensor ∇DR = 0 by Pérez and Suh [10], respectively, whereD = Span{ξ1, ξ2, ξ3},
ξi = −Ji N , i = 1, 2, 3.

Now, let us introduce complex hyperbolic quadric Qm∗ = SOo
m,2/SO2SOm , which can

be regarded as a Hermitian symmetric space with rank 2 of noncompact type. Here, we
consider a real hypersurface M in Qm∗ with Reeb parallel shape operator, that is, ∇ξ S = 0
for the shape operator S of M in Qm∗ along the Reeb direction ξ = −J N on M , where J
denotes the Kähler structure on Qm∗.

In order to give a complete classification of real hypersurfaces in Qm∗ with Reeb parallel
shape operator, first we will consider a problem of non-existence for real hypersurfaces in
Qm∗ with parallel shape operator. More generally, we consider the shape operator S of M in
Qm∗ satisfying (∇X S)Y = (∇Y S)X for any vector fields X and Y on M in Qm∗. In this case,
the shape operator is said to be of Codazzi type. In this paper, we want to give a property of
non-existence for real hypersurfaces in the complex hyperbolic quadric Qm∗ whose shape
operator is of Codazzi type as follows:

Theorem 1.1 There do not exist any real hypersurfaces in the complex hyperbolic quadric
Qm∗, m≥3, with shape operator of Codazzi type.

Next we will consider parallel shape operator for M in Qm∗. Since the parallel shape
operator S naturally satisfy the condition of Codazzi type, we can also assert the following

Corollary 1.2 There do not exist any real hypersurfaces in the complex hyperbolic quadric
Qm∗, m≥3, with parallel shape operator.

Apart from the complex structure J , there is another distinguished geometric structure on
Qm∗. Namely, a vector subbundle A[z] = {Aλz̄ |λ∈S1⊂C}, [z]∈Qm∗, which consists of all
complex conjugations defined on the complex hyperbolic quadric Qm∗. The vector bundle
A contains an S1-bundle of real structures, that is, complex conjugations A on the tangent
spaces of Qm∗ and becomes a parallel rank 2-subbundle of End T Qm∗. This geometric
structure determines a maximal A-invariant subbundleQ of the tangent bundle T M of a real
hypersurface M in Qm∗.

Recall that a nonzero tangent vector W ∈ TzQm∗ is called singular if it is tangent to
more than one maximal flat in Qm∗. Here maximal flat means a 2-dimensional curvature flat
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Real hypersurfaces in the complex hyperbolic quadric with. . . 1309

totally geodesic submanifold in Qm∗. Such a maximal flat always exists, because the rank
of Qm∗ is 2. There are two types of singular tangent vectors for the complex quadric Qm∗
as follows:

1. If there exists a conjugation A ∈ A such that W ∈ V (A), then W is singular. Such a
singular tangent vector is called A-principal.

2. If there exist a conjugation A ∈ A and orthonormal vectors X, Y ∈ V (A) such that
W/||W || = (X + JY )/

√
2, then W is singular. Such a singular tangent vector is called

A-isotropic,

where V (A) = {X∈T[z]Qm∗|AX = X} and JV (A) = {X∈T[z]Qm∗|AX = −X}, [z]∈Qm∗,
respectively denote the (+1)-eigenspace and (−1)-eigenspace for the involution A on
T[z]Qm∗, [z]∈Qm∗.

Here we note that the unit normal N is said to be A-principal if N is invariant under the
complex conjugation A, that is, AN = N .

For the complex hyperbolic space CHm , a full classification of real hypersurfaces with
isometric Reeb flow was obtained by Montiel and Romero in [7]. They proved that the Reeb
flow on a real hypersurface in CHm = SUm,1/S(UmU1) is isometric if and only if M is an
open part of a tube around a totally geodesic CHk ⊂ CHm for some k ∈ {0, . . . ,m − 1} or
horospheres.

The classification problem for real hypersurfaces with isometric Reeb flow for the com-
plex 2-plane Grassmannian G2(C

m+2) and the complex hyperbolic 2-plane Grassmannian
G∗

2(C
m+2) were solved by Suh [15,18] and Suh [17], respectively. The Reeb flow on a real

hypersurface in G∗
2(C

m+2) is isometric if and only if M is an open part of a tube around a
totally geodesic G∗

2(C
m+1) ⊂ G∗

2(C
m+2).

Now let us consider such a situation in the complex hyperbolic quadric Qm∗. In view
of the previous two results, a natural expectation might be that the classification involves at
least the totally geodesic Qm−1∗ ⊂ Qm∗. But in the paper due to Suh [22], we investigate
this problem for the complex hyperbolic quadric Qm∗ = SOm,2/SOmSO2 as follows:

Theorem A Let M be a real hypersurface in the complex hyperbolic quadric Qm∗ =
SOo

2,m/SOmSO2, m ≥ 3. The Reeb flow on M is isometric if and only if m is even, say

m = 2k, and M is an open part of a tube around a totally geodesic CHk ⊂ Q2k∗
or a

horosphere whose center at infinity is A-isotropic singular.

When the shape operator S of M in Qm∗ is Reeb parallel, that is, ∇ξ S = 0 along the
direction of the structure vector field ξ = −J N , we say that the shape operator is Reeb
parallel. Moreover, we say that the Reeb principal curvature is constant if the function
α defined by α = g(Sξ, ξ) is constant. Motivated by these results, we give a complete
classification of real hypersurfaces in the complex hyperbolic quadric Qm∗ withReeb parallel
shape operator as follows:

Theorem 1.3 Let M be a Hopf real hypersurface in complex hyperbolic quadric Qm∗, m≥3,
with Reeb parallel shape operator and non-vanishing Reeb curvature. Then M is an open
part of the following:

(1) a tube around the totally geodesic CHk ⊂ Q2k∗
, where m = 2k,

(2) a horosphere whose center at infinity is A-isotropic singular,
(3) a tube around the totally geodesicHermitian symmetric space Qm−1∗

embedded in Qm∗,
(4) a horosphere in Qm∗ whose center at infinity is the equivalence class of an A-principal

geodesic in Qm∗,
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1310 Y. J. Suh, D. H. Hwang

(5) a tube around the m-dimensional real hyperbolic space RHm which is embedded in
Qm∗ as a real space form,
or otherwise

(6) M has two distinct constant prinicipal curvatures given by

α, λ = α2 − 2

α

with multiplicities m and m − 1, respectively.

2 The complex hyperbolic quadric

Let us denote by Cm+2
1 an indefinite complex Euclidean space Cm+2, on which the indefinite

Hermitian product

H(z, w) = −z1w̄1 + z2w̄2 + · · · + zm+2w̄m+2

can be considered. The scalar product defined by the real part of H(z, w) is an indefinite
Riemannianmetric of index 2 onCm+2. Here the complex hyperbolic spaceCHm+1 is the set
of all complex 1-dimensional subspaces in C

m+2
1 , on which the indefinite Hermitian poduct

H(z, w) is negative definite.
The homogeneous quadratic equation z21 + · · · + z2m − z2m+1 − z2m+2 = 0 defines a

noncompact complex hyperbolic quadric Qm∗ = SOo
2,m/SO2SOm which can be immersed

in the (m+1)-dimensional complex hyperbolic spaceCHm+1 = SU1,m+1/S(Um+1U1). The
complex hypersurface Qm∗ in CHm+1 is known as the m-dimensional complex hyperbolic
quadric. The complex structure J on CHm+1 naturally induces a complex structure on Q∗m
which we will denote by J as well. We equip Qm∗ with the Riemannian metric g which is
induced from theBergmannmetric onCHm+1 with constant holomorphic sectional curvature
−4. For m ≥ 2 the triple, (Qm∗, J, g) is a Hermitian symmetric space of rank two, and its
minimal sectional curvature is equal to −4. The 1-dimensional quadric Q1∗

is isometric
to the 2-dimensional real hyperbolic space RH2 = SOo

1,2/SO1SO2. The 2-dimensional

complex quadric Q2∗
is isometric to the Riemannian product of complex hyperbolic spaces

CH1 × CH1. We will assume m ≥ 3 for the main part of this paper.
For a nonzero vector z ∈ C

m+2
1 , we denote by [z] the complex span of z, that is, [z] = {λz |

λ ∈ C}. Note that by definition [z] is a point in CHm+1. As usual, for each [z] ∈ CHm+1

we identify T[z]CHm+1 with the orthogonal complement Cm+2
1 	 [z] of [z] in C

m+2
1 . For

[z] ∈ Qm∗ the tangent space T[z]Qm∗ can then be identified canonically with the orthogonal
complement Cm+2

1 	 ([z]⊕ [z̄]) of [z]⊕ [z̄] in C
m+2
1 . Note that z̄ ∈ ν[z]Qm∗ is a unit normal

vector of Qm∗ in CHm+1 at the point [z].
We denote by Az̄ the shape operator of Qm∗ in CHm+1 with respect to z̄. Then we have

Az̄w = w for all w ∈ T[z]Qm∗, that is, Az̄ is just complex conjugation restricted to T[z]Qm∗.
The shape operator Az̄ is an antilinear involution on the complex vector space T[z]Q∗m and

T[z]Qm∗ = V (Az̄) ⊕ JV (Az̄),

where V (Az̄) = R
m+2
1 ∩ T[z]Qm∗ is the (+1)-eigenspace and JV (Az̄) = iRm+2

1 ∩ T[z]Qm∗
is the (−1)-eigenspace of Az̄ . Geometrically, this means that the shape operator Az̄ defines a
real structure on the complex vector space T[z]Qm∗. Recall that a real structure on a complex
vector space V is by definition an antilinear involution A : V → V . Since the normal
space ν[z]Qm∗ of Qm∗ in CHm+1

1 at [z] is a complex subspace of T[z]CHm+1 of complex
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Real hypersurfaces in the complex hyperbolic quadric with. . . 1311

dimension one, every normal vector in ν[z]Qm∗ can be written as λz̄ with some λ ∈ C. The
shape operators Aλz̄ of Qm∗ define a rank two vector subbundle A of the endomorphism
bundle End(T Qm∗).

The derivative of the second fundamental form of the embedding Qm∗ ⊂ CHm+1 is given
by

(∇̄X A)Y = q(X)J AY

for any vector fields X and Y on Qm∗, where ∇̄ and q denote the Levi-Civita connection and
a certain 1-form on T Qm∗, respectively. So the set of all complex conjugations A becomes
a parallel subbundle of End(T Qm∗). For λ ∈ S1 ⊂ C, we again get a real structure Aλz̄ on
T[z]Qm∗. Because, it satisfies the following for any w ∈ T[z]Qm and any λ∈S1⊂C

A2
λz̄w = Aλz̄ Aλz̄w = Aλz̄λw̄

= λAz̄λw̄ = λλ̄ ¯̄w
= |λ|2w = w.

Accordingly, A2
λz̄ = I for any λ∈S1. We thus have an S1-subbundle of A consisting of real

structures on the tangent spaces of Qm∗.
The Gauss equation for the complex hypersurface Qm∗ ⊂ CHm+1 implies that the Rie-

mannian curvature tensor R of Qm∗ can be expressed in terms of the Riemannian metric g,
the complex structure J and a generic real structure A in A:

R(X, Y )Z = −g(Y, Z)X + g(X, Z)Y

− g(JY, Z)J X + g(J X, Z)JY + 2g(J X, Y )J Z

− g(AY, Z)AX + g(AX, Z)AY

− g(J AY, Z)J AX + g(J AX, Z)J AY.

Note that the complex structure J anti-commutes with each endomorphism A ∈ A, that is,
AJ = −J A.

Basic complex linear algebra shows that for every unit tangent vectorW ∈ T[z]Qm∗ there
exist a real structure A ∈ A[z] and orthonormal vectors X, Y ∈ V (A) such that

W = cos(t)X + sin(t)JY

for some t ∈ [0, π/4]. The singular tangent vectors correspond to the values t = 0 and
t = π/4.

3 The maximal A-invariant subbundleQ of TM

Let M be a real hypersurface in the complex hyperbolic quadric Qm∗ and denote by
(φ, ξ, η, g) the induced almost contact metric structure on M and by ∇ the induced Rie-
mannian connection on M . Note that ξ = −J N , where N is a (local) unit normal vector
field of M . The vector field ξ is known as the Reeb vector field of M . If the integral curves
of ξ are geodesics in M , the hypersurface M is called a Hopf hypersurface (See Dragomir
and Perrone [4]). The integral curves of ξ are geodesics in M if and only if ξ is a principal
curvature vector of M everywhere. The tangent bundle T M of M splits orthogonally into
T M = C ⊕ F , where C = ker(η) is the maximal complex subbundle of T M and F = Rξ .
The structure tensor field φ restricted to C coincides with the complex structure J restricted
to C, and we have φξ = 0. We denote by νM the normal bundle of M .
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1312 Y. J. Suh, D. H. Hwang

We first introduce some notations. For a fixed real structure A ∈ A[z] and X ∈ T[z]M , we
decompose AX into its tangential and normal component, that is,

AX = BX + ρ(X)N ,

where BX is the tangential component of AX and

ρ(X) = g(AX, N ) = g(X, AN ) = g(X, AJξ) = g(J X, Aξ).

Since J X = φX + η(X)N and Aξ = Bξ + ρ(ξ)N , we also have

ρ(X) = g(φX, Bξ) + η(X)ρ(ξ) = η(BφX) + η(X)ρ(ξ).

We also define

δ = g(N , AN ) = g(J N , J AN ) = −g(J N , AJ N ) = −g(ξ, Aξ).

At each point [z] ∈ M we define

Q[z] = {X ∈ T[z]M | AX ∈ T[z]M for all A ∈ A[z]},
which is the maximal A[z]-invariant subspace of T[z]M . Then by using the same method for
real hypersurfaces in complex hyperbolic quadric Qm∗ as in Berndt and Suh [2], we get the
following

Lemma 3.1 Let M be a real hypersurface in complex hyperbolic quadric Qm∗. Then the
following statements are equivalent:

(i) The normal vector N[z] of M is A-principal,
(ii) Q[z] = C[z],
(iii) There exists a real structure A ∈ A[z] such that AN[z] ∈ Cν[z]M.

Assume now that the normal vector N[z] of M is not A-principal. Then there exists a real
structure A ∈ A[z] such that

N[z] = cos(t)Z1 + sin(t)J Z2

for some orthonormal vectors Z1, Z2 ∈ V (A) and 0 < t ≤ π
4 . This implies

N[z] = cos(t)Z1 + sin(t)J Z2,

AN[z] = cos(t)Z1 − sin(t)J Z2,

ξ[z] = sin(t)Z2 − cos(t)J Z1,

Aξ[z] = sin(t)Z2 + cos(t)J Z1,

and therefore, Q[z] = T[z]Qm 	 ([Z1] ⊕ [Z2]) is strictly contained in C[z]. Moreover, we
have

Aξ[z] = Bξ[z] and ρ(ξ[z]) = 0.

We have

g(Bξ[z] + δξ[z], N[z]) = 0,

g(Bξ[z] + δξ[z], ξ[z]) = 0,

g(Bξ[z] + δξ[z], Bξ[z] + δξ[z]) = sin2(2t),
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Real hypersurfaces in the complex hyperbolic quadric with. . . 1313

where the function δ denotes δ = −g(ξ, Aξ) = −(sin2 t − cos2 t) = cos 2t . Therefore,

U[z] = 1

sin(2t)
(Bξ[z] + δξ[z])

is a unit vector in C[z] and

C[z] = Q[z] ⊕ [U[z]] (orthogonal direct sum).

If N[z] is notA-principal at [z], then N is notA-principal in an open neighborhood of [z], and
therefore, U is a well-defined unit vector field on that open neighborhood. We summarize
this in the following

Lemma 3.2 Let M be a real hypersurface in complex hyperbolic quadric Qm∗ whose unit
normal N[z] is not A-principal at [z]. Then there exists an open neighborhood of [z] in M
and a section A in A on that neighborhood consisting of real structures such that

(i) Aξ = Bξ and ρ(ξ) = 0,
(ii) U = (Bξ + δξ)/||Bξ + δξ || is a unit vector field tangent to C
(iii) C = Q ⊕ [U ].

4 Tubes around the totally geodesic CHk ⊂ Q2k∗
and horospheres

We assume that m is even, say m = 2k. The map

CHk → Q2k∗ = SOo
2,2k/SO2SO2k ⊂ CH2k+1,

is defined by [z1, . . . , zk+1] �→ [z1, . . . , zk+1, i z1, . . . , i zk+1], provides an embedding of
CHk into Q2k∗

as a totally geodesic complex submanifold in CH2k+1, where

Q∗2k ={[z1, · · ·, z2k+2]∈CH2k+1| − z21 + z22 + · · ·z2k+1 − z2k+2 + z2k+3 + · · · + z22k+2 = 0}
can be regarded as the set of negative 2-planes in indefinite Euclidean space R2k+2

2 , that is,
a real hyperbolic Grassmannian manifold. Of course, it can be easily checked that the point
[z1, . . . , zk+1, i z1, . . . , i zk+1] belongs to Q2k∗

.
Consider the standard embedding of U1,k into SOo

2,2k which is determined by the Lie
algebra embedding in such a way that

u1,k→so2,2k, C + Di→
(
C −D
D C

)
,

where C, D∈Mk+1,k+1(R) which satisfy, respectively, tCgC = g and t DgD = g for the
signature (1, k)of the indefiniteRiemannianmetric g onRk+1

1 defined by g(X, Y ) = −x1y1+
x2y2 + · · · + xk+1yk+1 for any X, Y∈Rk+1.

We define a complex structure j on C
2k+2
1 by

j (z1, . . . , zk+1, zk+2, . . . , z2k+2) = (−zk+2, . . . ,−z2k+2, z1, . . . , zk+1).

Note that i j = j i . We can then identify C
2k+2
1 with C

k+1
1 ⊕ jCk+1 and get

T[z]CHk = {X + j i X | X ∈ C
k+1
1 	 [z]} = {X + i j X | X ∈ V (Az̄)}.

Note that the complex structure j on C
2k+2
1 corresponds to the complex structure J on

T[z]Q2k∗
via the obvious identifications. For the normal space ν[z]CHk of CHk at [z], we
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1314 Y. J. Suh, D. H. Hwang

have

ν[z]CHk = Az̄(T[z]CHk) = {X − i j X | X ∈ V (Az̄)}.
It is easy to see that both the tangent bundle and the normal bundle of CHk consist of
A-isotropic singular tangent vectors of Q2k∗

.
We will now calculate the principal curvatures and principal curvature spaces of the tube

around CHk in Q2k∗
. Let N be a unit normal vector of CHk in Q2k∗

at [z] ∈ CHk . Since by
Theorem A, the unit normal N is A-isotropic. Then the four vectors N , J N , AN and J AN
are pairwise orthonormal and the normal Jacobi operator R̄N is given by

R̄N Z = R̄(Z , N )N = −Z + g(Z , N )N − 3g(Z , J N )J N

+ g(Z , AN )AN + g(Z , J AN )J AN .

From this, by using that N is A-isotropic, R̄N N = R̄(N , N )N = 0, R̄N AN =
R̄(AN , N )N = 0, R̄N J AN = 0, and R̄N J N = −4J N . This implies readily that R̄N

has the three eigenvalues 0,−1 and −4 with corresponding eigenspaces RN ⊕ [AN ],
T[z]Q2k∗ 	 ([N ] ⊕ [AN ]) and RJ N . Since [N ] ⊂ ν[z]CHk and [AN ] ⊂ T[z]CHk , we
conclude that both T[z]CHk and ν[z]CHk are invariant under R̄N .

To calculate the principal curvatures of the tube around CHk we use the Jacobi field
method. Let γ be the geodesic in Q2k∗

with γ (0) = [z] and γ̇ (0) = N and denote by γ ⊥ the
parallel subbundle of T Q2k∗

along γ defined by γ ⊥
γ (t) = T[γ (t)]Q2k∗ 	 Rγ̇ (t). Moreover,

define the γ ⊥-valued tensor field R⊥
γ along γ by R⊥

γ (t)X = R(X, γ̇ (t))γ̇ (t). Now consider

the End(γ ⊥)-valued differential equation

Y ′′ + R⊥
γ ◦ Y = 0.

Let D be the unique solution of this differential equation with initial values

D(0) =
(
I 0
0 0

)
, D′(0) =

(
0 0
0 I

)
,

where the decomposition of the matrices is with respect to

γ ⊥[z] = T[z]CHk ⊕ (ν[z]CHk 	 RN )

and I denotes the identity transformation on the corresponding space. Then the shape operator
S(r) of the tube around CHk with respect to −γ̇ (r) is given by

S(r) = D′(r) ◦ D−1(r).

If we decompose γ ⊥[z] further into

γ ⊥[z] = (T[z]CHk 	 [AN ]) ⊕ [AN ] ⊕ (ν[z]CHk 	 [N ]) ⊕ RJ N ,

we get by explicit computation that

S(r) =

⎛
⎜⎜⎝
tanh(r) 0 0 0

0 0 0 0
0 0 coth(r) 0
0 0 0 2 coth(2r)

⎞
⎟⎟⎠

with respect to that decomposition. Here let us check that SJ N = 2 coth(2r)J N for
M⊂Q2k∗

. Since R̄N J N = −4J N , we have Y
′′ − 4Y = 0 for a geodesic γ such that
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Real hypersurfaces in the complex hyperbolic quadric with. . . 1315

γ (0) = [z] and γ̇ (0) = N . The solution vector field Y (r) of the Jacobi equation becomes

Y (r) = (c1 cosh(2r) + c2 sinh(2r))EX (r),

where the initial condition is given by 0 = Y (0) = c1EX (0) = c1X and X = Y ′(0) =
2c2EX (0) = 2c2X and the vector field EX (r) is defined by the parallel displacement of the
vector EX (0) = X along the curve γ .

Here we know that the solution vector field can be obtained by Y (r) = D(r)EX (r) =
1
2 sinh(2r)EX (r). From this, together with the definition of the shape operator, it follows that

1

2
sinh(2r)S(r)EX (r) = S(r)Y (r) = D′(r)D−1(r)Y

= D′(r)EX (r) = cosh(2r)EX (r).

This implies that S(r)EX (r) = 2 coth(2r)EX (r), which means S(r)J N = 2 coth(2r)J N .
By using the similar method we can calculate the other principal curvatures. Therefore,
the tube around CHk has four distinct constant principal curvatures tanh(r), 0, coth(r) and
2 coth(2r) (unless m = 2 in which case there are only two distinct constant principal curva-
tures 0 and 2 coth(2r)). The corresponding principal curvature spaces are T[z]CHk 	 [AN ],
[AN ], ν[z]CHk 	 [N ] and RJ N , respectively, where we identify the subspaces obtained by
parallel translation along γ from [z] to γ (r). This shows that the tube is aHopf hypersurface.

Note that the parallel translate of [AN ] corresponds to C 	 Q, the parallel translate of
[N ] corresponds to CνM , and the parallel translate of RJ N corresponds to F . Moreover, we
have A(T[z]CHk 	 [AN ]) = ν[z]CHk 	 [N ].

When M becomes an open part of a horosphere in Q2k∗
whose center at infinity in the

equivalence class of an A-isotropic geodesic in Q2k∗
, by using the results in Suh [22] and

taking the limit to the above principal curvatures as r→∞, we can calculate that it has
three distinct constant prinicipal curvatures 1, 0, 1 and 2 corresponding to the same principal
curvature spaces mentioned above.

Since J N is a principal curvature vector, we conclude that every tube around CHk is a
Hopf hypersurface. We also see that all principal curvature spaces orthogonal to RJ N are
J -invariant. Thus, if φ denotes the structure tensor field on the tube which is induced by J ,
we get Sφ = φS. Since the Kähler structure on Qm∗ is parallel, we have

g(∇X ξ, Y ) + g(X,∇Y ξ) = g((Sφ − φS)X, Y )

for all X, Y ∈ T M . As ξ is a Killing vector field if and only if∇ξ is a skew-symmetric tensor
field, we see that the Reeb flow on M is isometric if and only if Sφ = φS.

We summarize the previous discussion in the following proposition.

Proposition 4.1 Let M be the tube around the totally geodesic CHk in the complex hyper-
bolic quadric Q2k∗

, k ≥ 2, or the horosphere in Q2k∗
whose center at infinity is in the

equivalence class of an A-isotropic singular geodesic in Q2k∗
. Then the following state-

ments hold:

(i) M is a Hopf hypersurface,
(ii) The tangent bundle T M and the normal bundle νM of M consist ofA-isotropic singular

tangent vectors of Q2k∗
,

(iii) M has four(or three) distinct constant principal curvatures. Their values and cor-
responding principal curvature spaces and multiplicities are given in the following
Table 1. The real structure A determined by the A-isotropic unit normal vector at [z]
maps T[z]CHk 	 (C[z] 	 Q[z]) onto ν[z]CHk 	 Cν[z]M, and vice versa,
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1316 Y. J. Suh, D. H. Hwang

Table 1 Principal curvatures of
M

Principal curvature Eigenspace Multiplicity

2 coth(2r), 2 F 1

0 C 	 Q 2

tanh(r), 1 TCPk 	 (C 	 Q) 2k − 2

coth(r), 1 νCPk 	 CνM 2k − 2

(iv) The shape operator S of M and the structure tensor field φ of M commute with each
other, that is, Sφ = φS,

(v) The Reeb flow on M is an isometric flow.

5 The Codazzi equation and some consequences

From the explicit expression of the Riemannian curvature tensor of the complex hyperbolic
quadric Qm∗, we can easily derive the Codazzi equation for a real hypersurfaceM in complex
hyperbolic quadric Qm∗ as follows:

g((∇X S)Y − (∇Y S)X, Z)

= −η(X)g(φY, Z) + η(Y )g(φX, Z) + 2η(Z)g(φX, Y )

− ρ(X)g(BY, Z) + ρ(Y )g(BX, Z)

+ η(BX)g(BY, φZ) + η(BX)ρ(Y )η(Z)

− η(BY )g(BX, φZ) − η(BY )ρ(X)η(Z)

for any vector fields X, Y and Z tangent to M in Qm∗. We now assume that M is a Hopf
hypersurface. Then the shape operator S of M in Qm∗ satisfies

Sξ = αξ

with the Reeb function α = g(Sξ, ξ) on M . Inserting Z = ξ into the Codazzi equation leads
to

g((∇X S)Y − (∇Y S)X, ξ) = 2g(φX, Y ) − 2ρ(X)η(BY ) + 2ρ(Y )η(BX).

On the other hand, we have

g((∇X S)Y − (∇Y S)X, ξ)

= g((∇X S)ξ, Y ) − g((∇Y S)ξ, X)

= dα(X)η(Y ) − dα(Y )η(X) + αg((Sφ + φS)X, Y ) − 2g(SφSX, Y ).

Comparing the previous two equations and putting X = ξ yields

dα(Y ) = dα(ξ)η(Y ) + 2δρ(Y ),

where the function δ = g(AN , N ) is defined in Sect. 3. Reinserting this into the previous
equation yields

g((∇X S)Y − (∇Y S)X, ξ)

= −2δη(X)ρ(Y ) + 2δρ(X)η(Y )

+αg((φS + Sφ)X, Y ) − 2g(SφSX, Y ).
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Altogether this implies

0 = 2g(SφSX, Y ) − αg((φS + Sφ)X, Y ) + 2g(φX, Y )

− 2δρ(X)η(Y ) − 2ρ(X)η(BY ) + 2ρ(Y )η(BX) + 2δη(X)ρ(Y )

= g((2SφS − α(φS + Sφ) + 2φ)X, Y )

− 2ρ(X)η(BY + δY ) + 2ρ(Y )η(BX + δX)

= g((2SφS − α(φS + Sφ) + 2φ)X, Y )

− 2ρ(X)g(Y, Bξ + δξ) + 2g(X, Bξ + δξ)ρ(Y ).

If AN = N we have ρ = 0, otherwise we can use Lemma 3.2 to calculate ρ(Y ) =
g(Y, AN ) = g(Y, AJξ) = −g(Y, J Aξ) = −g(Y, J Bξ) = −g(Y, φBξ). Thus we have
proved

Lemma 5.1 Let M be a Hopf hypersurface in the complex hyperbolic quadric Qm∗, m ≥ 3.
Then we have

(2SφS − α(φS + Sφ) + 2φ)X = 2ρ(X)(Bξ + δξ) + 2g(X, Bξ + δξ)φBξ.

If the unit normal vector field N isA-principal, we can choose a real structure A ∈ A such
that AN = N . Then we have ρ = 0 and φBξ = −φξ = 0, and therefore,

2SφS − α(φS + Sφ) = −2φ.

If N is not A-principal, we can choose a real structure A ∈ A as in Lemma 3.2 and get

ρ(X)(Bξ + δξ) + g(X, Bξ + δξ)φBξ

= −g(X, φ(Bξ + δξ))(Bξ + δξ) + g(X, Bξ + δξ)φ(Bξ + δξ)

= ||Bξ + δξ ||2(g(X,U )φU − g(X, φU )U )

= sin2(2t)(g(X,U )φU − g(X, φU )U ),

which is equal to 0 on Q and equal to sin2(2t)φX on C 	 Q. Altogether we have proved:

Lemma 5.2 Let M be a Hopf hypersurface in the complex hyperbolic quadric Qm∗, m ≥ 3.
Then the tensor field

2SφS − α(φS + Sφ)

leaves Q and C 	 Q invariant and we have

2SφS − α(φS + Sφ) = −2φ on Q
and

2SφS − α(φS + Sφ) = −2δ2φ on C 	 Q,

where δ = cos 2t as in Sect. 3.

Now let us assume that M is a real hypersurface in Qm with isometric Reeb flow. Then
the commuting shape operator Sφ = φS implies Sξ = αξ , that is, M is Hopf. We will now
prove that the Reeb curvature α of a Hopf hypersurface is constant if the normal vectors are
A-isotropic. Assume that the unit normal vector field N is A-isotropic everywhere. Then we
have δ = 0 and we get

Yα = dα(ξ)η(Y )
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for all Y ∈ T M . Since gradMα = dα(ξ)ξ , we can compute the Hessian hessMα by

(hessMα)(X, Y ) = g(∇Xgrad
Mα, Y )

= d(dα(ξ))(X)η(Y ) + dα(ξ)g(φSX, Y ).

As hessMα is a symmetric bilinear form, the previous equation implies

dα(ξ)g((Sφ + φS)X, Y ) = 0

for all vector fields X, Y on M which are tangential to C.
Now let us assume that Sφ+φS = 0. For every principal curvature vector, X ∈ C such that

SX = λX this implies SφX = −φSX = −λφX . We assume ||X || = 1 and put Y = φX .
Using the normal vector field, N is A-isotropic, that is δ = 0 in Lemma 5.1, we know that

−λ2φX + φX = ρ(X)Bξ + g(X, Bξ)φBξ.

From this, taking the inner product with φX and using g(X, Bξ) = g(X, Aξ) =
−g(φX, AN ) = −ρ(φX), we have

−λ2 + 1 = ρ(X)η(BφX) − ρ(φX)η(BX)

= g(X, AN )2 + g(X, Aξ)2 = ||XC	Q||2 ≤ 1,

where XC	Q denotes the orthogonal projection of X onto C 	 Q.
On the other hand, from the commuting shape operator and the above equation for SX =

λX , it follows that

−λφX = −φSX = SφX = φSX = λφX.

This gives that the principal curvature λ = 0. Then the above two equation give ||XC	Q||2 =
1 for all principal curvature vectors X ∈ C with ||X || = 1. This is only possible if C = C	Q,
or equivalently, ifQ = 0. Sincem ≥ 3 this is not possible. Hence, wemust have Sφ+φS �= 0
everywhere, and therefore, dα(ξ) = 0, which implies gradMα = 0. Since M is connected
this implies that α is constant. Thus we have proved:

Lemma 5.3 Let M be a real hypersurface in the complex hyperbolic quadric Qm∗, m ≥
3, with isometric Reeb flow and A-isotropic normal vector field N everywhere. Then α is
constant.

6 Proof of Theorem 1.1 and Corollary 1.2

Now let us denote by S the shape operator of a real hypersurfaceM in the complex hyperbolic
quadric Qm∗. If a real hypersurface M in Qm∗ has the shape operator of Codazzi type, that
is, (∇X S)Y = (∇Y S)X for any X and Y on M , then by the equation of Codazzi we have

0 = −η(X)g(φY, Z) + η(Y )g(φX, Z) + 2η(Z)g(φX, Y )

− g(X, AN )g(AY, Z) + g(Y, AN )g(AX, Z)

− g(X, Aξ)g(J AY, Z) + g(Y, Aξ)g(J AX, Z).

(6.1)

From this, putting X = ξ , we know that

0 = −g(φY, Z) − g(ξ, AN )g(AY, Z) + g(Y, AN )g(Aξ, Z)

− g(ξ, Aξ)g(J AY, Z) + g(Y, Aξ)g(J Aξ, Z).
(6.2)
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Here, let us put Z = ξ , then we have

0 = −g(ξ, AN )g(AY, ξ) + g(Y, AN )g(Aξ, ξ)

− g(ξ, Aξ)g(J AY, ξ) + g(Y, Aξ)g(J Aξ, ξ)

= −2
{
g(ξ, AN )g(AY, ξ) − g(Aξ, ξ)g(Y, AN )

}
.

Since g(Aξ, N ) = 0, it follows that

g(Aξ, ξ)g(AN , Y ) = g(AJ N , J N )g(AN , Y ) = 0.

This gives that cos 2t = 0 or g(AN , Y ) = 0 for any tangent vector field Y on M . Then it
follows that either

AN = N or t = π

4
.

From this, we assert the following lemma.

Lemma 6.1 Let M be a real hypersurface in the complex hyperbolic quadric Qm∗, m ≥ 3,
with shape operator of Codazzi type. Then the unit normal vector field N is eitherA-principal
or A-isotropic.

Then let us consider the first case as follows:
Case (1) N : A-principal, that is, AN = N .
Eq. (6.2) gives the following

0 = − g(φY, Z) − g(ξ, Aξ)g(J AY, Z) + g(Aξ, Y )g(J Aξ, Z)

= − g(φY, Z) + g(J AY, Z),
(6.3)

where in the second equality we have used that g(ξ, Aξ) = g(J N , AJ N ) = −g(J N , J AN )

= −g(J N , J N ) = −1 and g(J Aξ, Z) = −g(J AJ N , Z) = −g(AN , Z) = −g(N , Z) = 0
for any vector fields Y and Z on M in Qm∗. Thus we know g(φY, Z) = g(J AY, Z). Then
the left-hand side is skew-symmetric, but by the anti-commuting property of AJ = −J A,
the right-hand side becomes

g(J AY, Z) = −g(AY, J Z) = g(Y, J AZ),

that is, J A becomes symmetric. This gives us a contradiction. So we conclude that there do
not exist any real hypersurfaces in the complex hyperbolic quadric Qm∗ with parallel shape
operator for A-principal unit normal vector field.

We consider the next case as follows:
Case (2) N : A-isotropic.
In this case the unit normal vecor field N can be written as N = 1√

2
(Z1 + J Z2) for

Z1, Z2∈V (A). Then it follows that

AN = 1√
2
(Z1 − J Z2), AJ N = − 1√

2
(J Z1 + Z2), and J N = 1√

2
(J Z1 − Z2).

So it gives

g(ξ, Aξ) = g(J N , AJ N ) = 0, g(ξ, AN ) = 0, and g(AN , N ) = 0. (6.4)
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From this, we know that AN is a tangent vector. Then by putting X = AN into (6.1), we
have

0 = η(Y )g(φAN , Z) + 2η(Z)g(φAN , Y ) − g(AY, Z)

+ g(Y, Aξ)g(J A2N , Z)

= η(Y )g(φAN , Z) + 2η(Z)g(Aξ, Y ) − g(AY, Z) − η(Z)g(Y, Aξ)

= η(Y )g(Aξ, Z) + η(Z)g(Aξ, Y ) − g(AY, Z), (6.5)

where in the third equality we have used

g(φAN , Z) = g(J AN , Z) = −g(AJ N , Z) = g(Aξ, Z).

Then the Eq. (6.5) means that

g(AY, Z) = 0

for anyY, Z∈H, whereH denotes the complex subbundle of T M orthogonal to theReebvector
field ξ . From this, together with (6.4), the complex conjugation on the complex quadric Qm∗
can be expressed by

A =

⎡
⎢⎢⎢⎢⎢⎣

0 0 ∗ · · · ∗
0 0 ∗ · · · ∗
∗ ∗ 0 · · · 0
...

... 0 · · · 0
∗ ∗ 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦

(6.6)

But we know that the complex conjugation is involutive, that is, A2 = I . So the expression
(6.6) gives us a contradiction. Accordingly, for A-isotropic normal vector field N , there do
not exit any hypersurfaces in the complex hyperbolic quadric Qm∗ with shape operator of
Codazzi type.

Summing up these two cases, we conclude that there do not exist any real hypersurfaces
in the complex hyperbolic quadric Qm∗ with shape operator of Codazzi type. This completes
the proof of our Theorem 1.1. Naturally, if the shape operator is parallel, it is of Codazzi
type. Accordingly, as a corollary of Theorem 1.1, we get Corollary 1.2.

7 Proof of Theorem 1.3

Before going to prove Theorem 1.3, first let us see if the shape operator of the tube of radius
r over a complex hyperbolic space CHk in the complex hyperbolic quadric Q2k∗

is Reeb
parallel or not. In order to do this, let us mention that the shape operator S of the tube
commutes with the structure tensor φ, that is, Sφ = φS as in Proposition 4.1. Then, by using
the same method as in Berndt and Suh (see [1], p. 1350050-14), it can be easily verified
that the expression of the covariant derivative for the shape operator of M in the complex
hyperbolic quadric Qm∗ becomes

(∇X S)Y = {dα(X)η(Y ) + g((αSφ − S2φ)X, Y ) − δη(Y )ρ(X)

− δg(BX, φY ) − η(BX)ρ(Y )}ξ
−{η(Y )ρ(X) + g(BX, φY )}Bξ − g(BX, Y )φBξ

+ ρ(Y )BX + η(Y )φX + η(BY )φBX,
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where we have put

AY = BY + ρ(Y )N , ρ(Y ) = g(AY, N )

for a complex conjugation A∈A. Putting X = ξ and using that the Reeb function α is constant
and ρ(ξ) = 0 for the A-isotropic unit normal vector field N of M in the complex hyperbolic
quadric Q2k∗

, we have

(∇ξ S)Y = −{δg(Bξ, φY ) + η(Bξ)ρ(Y )}ξ
− {η(Y )ρ(ξ) + g(Bξ, φY )}Bξ − g(Bξ, Y )φBξ

+ ρ(Y )Bξ + η(BY )φBξ

= −{g(Bξ, φY ) − ρ(Y )}Bξ

= {g(φBξ, Y ) − g(Y, φBξ}Bξ

= 0,

where in the third equality we have used

ρ(Y ) = g(AY, N ) = g(Y, AN )

= g(Y, AJξ)

= −g(Y, J Aξ) = −g(Y, J Bξ)

= −g(Y, φBξ).

So we conclude that a real hypersurface M in Q2k∗
with commuting shape operator, that is,

Sφ = φS, has parallel shape operator along the Reeb direction, ∇ξ S = 0.
Now let us prove our Theorem 1.3 in the introduction. Let us assume ∇ξ S = 0. Then by

putting X = ξ in the equation of Codazzi, we have

−g((∇Y S)ξ, Z) = −g(φY, Z) − g(ξ, AN )g(AY, Z) + g(Y, AN )g(Aξ, Z)

−g(ξ, Aξ)g(J AY, Z) + g(Y, Aξ)g(J Aξ, Z).

By the assumption of Theorem 1.3, we know that M is Hopf. Then it follows that

(∇Y S)ξ = ∇Y (Sξ) − S(∇Y ξ)

= ∇Y (αξ) − S∇Y ξ

= (Yα)ξ + αφSY − SφSY.

From this, together with the above equation, it follows that

0 = η(Z)Yα + αg(φSY, Z) − g(SφSY, Z)

− g(φY, Z) − g(ξ, AN )g(AY, Z) + g(Y, AN )g(Aξ, Z)

− g(ξ, Aξ)g(J AY, Z) + g(Y, Aξ)g(J Aξ, Z). (7.1)

From this, putting Z = ξ and using M is Hopf and g(Aξ, N ) = 0 in Sect. 5, we have

0 = Yα − g(ξ, AN )g(AY, ξ) + g(Y.ZN )g(Aξ, ξ)

− g(ξ, Aξ)g(J AY, ξ) + g(Y, Aξ)g(J Aξ, ξ)

= Yα + 2g(Y, AN )g(ξ, Aξ), (7.2)

where we have used that g(Aξ, N ) = 0 in Sect. 4. So from (7.2), we know that the Reeb
function α = g(Sξ, ξ) for the shape operator of M in Qm∗ is constant if and only if the unit
normal vector field N is A-principal or A-isotropic, because AN = N or g(Aξ, ξ) = 0 for
a complex conjugation A∈A. Now we summarize it as follows:

123

Author's personal copy



1322 Y. J. Suh, D. H. Hwang

Lemma 7.1 Let M be aHopf real hypersurface in the complex hyperbolic quadric Qm∗ with
Reeb parallel shape operator. Then the Reeb curvature function α = g(Sξ, ξ) is constant if
and only if the unit normal vector field N is either A-principal or A-isotropic.

When the unit normal vector field N of M in the complex hyperbolic quadric Qm∗ is
A-principal and the shape operator is Reeb parallel, by using AN = N we know

g(ξ, Aξ) = g(J N , AJ N ) = −g(J N , J N ) = −1.

So the Eq. (7.1) becomes

αg(φSY, Z) − g(SφSY, Z) − g(φY, Z) + g(J AY, Z) = 0.

This formula can be written as follows:

0 = αg(φSZ , Y ) − g(SφSZ , Y ) − g(φZ , Y ) + g(J AZ , Y )

= −αg(SφY, Z) + g(SφSY, Z) + g(φY, Z) + g(J AY, Z).

Then taking sum and subtracting from the above two equations give the following, respec-
tively:

αg((φS − Sφ)Y, Z) = −2g(J AY, Z) (7.3)

and
αg((φS + Sφ)Y, Z) − 2g(SφSY, Z) − 2g(φY, Z) = 0. (7.4)

Now first we want to prove the following proposition.

Proposition 7.2 Let M be a Hopf real hypersurface in the complex hyperbolic quadric Qm∗
with A-principal normal vector field and Reeb parallel shape operator. Then M is locally
congruent to one of the following

(1) a tube around the totally geodesicHermitian symmetric space Qm−1∗
embedded in Qm∗,

(2) a horosphere in Qm∗ whose center at infinity is the equivalence class of an A-principal
geodesic in Qm∗,

(3) a tube around the m-dimensional real hyperbolic space RHm which is embedded in
Qm∗ as a real space form in Qm∗,
or otherwise

(4) M has two distinct constant prinicipal curvatures given by

α, λ = α2 − 2

α

with multiplicities m and m − 1, respectively.

Proof Before going to give our proof, let us mention the following formulas:

J AY = J (BY + ρ(Y )N )

= φBY + η(BY )N + ρ(Y )J N

= φBY − ρ(Y )ξ + η(BY )N ,

g(J AY, Z) = g(φBY − ρ(Y )ξ, Z) = g(φBY, Z) − ρ(Y )η(Z),

and
g(AY, Z) = g(BY + ρ(Y )N , Z) = g(BY, Z).
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So the Codazzi equation becomes

(∇X S)Y − (∇Y S)X = − η(X)φY + η(Y )φX + 2g(φX, Y )ξ

− g(X, AN )BY + g(Y, AN )BX

− g(X, Aξ){φBY − ρ(Y )ξ}
+ g(Y, Aξ){φBX − ρ(X)ξ}.

(7.5)

From this, putting X = ξ , and using that the shape operator is Reeb parallel, we have the
following for any A-principal unit normal N

SφSY − (Yα)ξ − αφSY = − (∇Y S)ξ

= − φY − g(ξ, Aξ){φBY − ρ(Y )ξ} + g(Y, Aξ)φBξ,
(7.6)

where we have put Aξ = Bξ and AX = BX + ρ(X)N . From this, taking the inner product
with ξ , we have

Yα = −ρ(Y ) = −g(AY, N ) = −g(Y, AN ) = −g(Y, N ) = 0.

From this, together with (7.4), (7.6) and φBξ = 0 for N is A-principal, we have

α

2
(Sφ − φS)Y = φBY. (7.7)

By Lemma 5.1, we know that for the A-principal unit normal N

2SφS − α(φS + Sφ) = −2φ.

Now let us put SX = λX for some X∈H. Then it follows that
(2λ − α)SφX = (αλ − 2)φX.

When 2λ − α = 0, it gives λ = 1 and α = 2. So it becomes a horosphere in Qm∗ whose
center at infinity is the equivalence class of an A-principal geodesic in Qm∗.

When 2λ − α �=0, then

SφX = αλ + 2

2λ − α
φX. (7.8)

In this case, Y∈TzQm∗ = V (A)⊕JV (A). So we consider the following three cases.

Subcase 1. BY = Y for Y∈V (A).

Then by (7.7) and (7.8), we have

α

2

{αλ − 2

2λ − α
− λ

}
φY = φY.

This gives that the principal curvatures satisfy λ{αλ + (2 − α2)} = 0, which means λ = 0

or λ = α2−2
α

. The expression of the shape operator S becomes

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α 0 · · · 0 0 · · · 0
0 2

α
· · · 0 0 · · · 0

...
...

. . .
...

... · · · 0
0 0 · · · 2

α
0 · · · 0

0 0 · · · 0 0 · · · 0
...

...
...

...
...

. . .
...

0 0 · · · 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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This means equivalently that the shape operator satisfies Sφ + φS = kφ, where k = 2
α
.

(See Blair [3]). Then by Theorem C in the introduction (see Berndt and Suh [2]), M is a
tube of radius r around a totally geodesic Hermitian symmetric space Qm−1∗

embedded in
Qm∗, a horosphere in Qm∗ whose center at infinity is the equivalence class of an A-principal
geodesic in Qm∗, or the tube of radius r→∞ (with infinite radius) around them-dimensional
real hyperbolic space RHm , which is embedded in Qm∗ as a real space form, or otherwise
the expression of the shape operator becomes

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α 0 · · · 0 0 · · · 0

0 α2−2
α

· · · 0 0 · · · 0
...

...
. . .

...
... · · · 0

0 0 · · · α2−2
α

0 · · · 0
0 0 · · · 0 α · · · 0
...

...
...

...
...

. . .
...

0 0 · · · 0 0 · · · α

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Subcase 2. BY = −Y for Y∈V (A).

Then by (7.7) and (7.8), we have

α

2

{αλ − 2

2λ − α
− λ

}
φY = −φY.

This gives that the principal curvatures satisfy α{αλ − 1 − λ2}φY = −(2λ − α)φY , which
implies (αλ − 2)(λ − α) = 0. Then it follows that λ = α or λ = 2

α
. Then the expressions of

the shape operator are the same as given in Subcase 1.
Subcase 3. Y = 1√

2
(Z + W ) for Z∈V (A) and W∈JV (A).

In this subcase, we have BY = AY = 1√
2
(Y − Z). Then also by (7.7) and (7.8), we have

α

2

{αλ − 2

2λ − λ
− λ

}{ 1√
2
φY + 1√

2
φZ

}
= 1√

2
(φY − φZ).

Then by comparing φZ and φW , we have both

α

2

{αλ − 2

2λ − λ
− λ

}
= 1

and

α

2

{αλ − 2

2λ − λ
− λ

}
= −1.

This gives a contradiction. So this case cannot appear.
Summing up above discussions, we have a complete proof of the above proposition.

Then by virtue of Lemma 7.1 and Proposition 7.2, we are now considering only the case
that N is A-isotropic for M in the complex hyperbolic quadric Qm . Naturally we can assert
the following

Proposition 7.3 Let M be aHopf real hypersurface in the complex hyperbolic quadric Qm∗,
m≥3, with non-vanishing Reeb curvature. If the unit normal N is A-isotropic and the shape
operator is Reeb parallel, then M is locally congruent to a tube around a totally geodesic
CHk ⊂ Q2k∗

or a horosphere whose center at infinity is A-isotropic singular.
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Proof By Lemma 5.3, we know that the Reeb curvature α is constant, because N is A-
isotropic. Moreover, the unit normal N can be written as N = 1√

2
(Z1 + J Z2), where

Z1, Z2∈V (A). Accordingly, it follows that

g(ξ, Aξ) = g(J N , AJ N ) = 0, g(ξ, AN ) = 0, g(AN , N ) = 0,

because AN = 1√
2
(Z1 − J Z2), AJ N = − 1√

2
(J Z1 + Z2), and J N = 1√

2
(J Z1 − Z2).

From this, using ∇ξ S = 0 in the equation of Codazzi, we have

αg(φSX, Z) − g(SφSX, Z) = g(φX, Z) − g(X, AN )g(Aξ, Z)

− g(X, Aξ)g(J Aξ, Z).
(7.9)

On the distribution Q, we know that AX∈TzM , z∈M for any A∈A. So it follows that
g(X, AN ) = g(AX, N ) = 0 and

g(J Aξ, Z) = −g(J AJ N , Z) = −g(AN , Z) = −g(N , AZ) = 0.

On the other hand, by Lemma 5.2 in Sect. 5 due to Berndt and Suh [1], we can use the
following formula

SφS = α

2
(Sφ + φS) − φ (7.10)

on the distribution Q in M . From this, together with (7.7), it follows that

−α

2
g((Sφ − φS)X, Z) = 0

for any X and Z tangent to M in Qm∗. So from the assumption we have that the shape
operator S commutes with the structure tensor φ, that is, Sφ = φS on the distribution Q.
Then together with (7.8), on the distribution Q we get the following

SφS − αSφ = −φ.

When we consider a principal curvature vector X∈Q such that SX = λX , then the principal
curvature λ becomes a solution of x2 −αx +1 = 0. Moreover, this equation has two distinct
roots, and we may put λ = coth r , μ = tanh r and α = 2 coth 2r .

Now let us continue our discussion on the distribution C	Q. Then by Lemma 5.2 in
Sect. 5, we know that

2SφS − α(Sφ + φS) = 0 (7.11)

because δ = 0 for anA-isotropic normal vector field N . Now let us differentiate g(ξ, AN ) =
0. Then it follows that

g(∇̄X ξ, AN ) + g(ξ, (∇̄X A)N + A∇̄X N ) = 0.

From this, together with (∇̄X A)N = q(X)AN , we have

0 = g(φSX, AN ) − g(ξ, ASX)

= g(φSX, AN ) + g(J N , ASX)

= g(φSX, AN ) + g(N , AφSX) + η(SX)g(N , Aξ)

= −2g(SφAN , X) (7.12)

for any vector field X on the distribution C	Q. So SφAN = 0 is equivalent to SAξ = 0.
From this, together with (7.11), we have
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αSφAξ = 0.

So we get SφAξ = 0 from the assumption. This means that Sφ = φS on the distribution
C	Q = Span{Aξ, AN }, where AN = −φAξ . Consequently, we conclude that the shape
operator S commutes with the structure tensor φ for a Hopf hypersurface M in Qm∗. This
means that the Reeb flow of M is isometric. Then by Theorem A, we give a complete proof
of our proposition.

Summing up the above discussions with Lemma 7.1, Propositions 7.2 and 7.3, we give a
complete proof of Theorem 1.3 in the introduction.
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